Discrete combinatorial optimization has a central role in many scientific disciplines, however,for hard problems we lack linear time algorithms that would allow us to solve very largeinstances. Moreover, it is still unclear what are the key features that make a discretecombinatorial optimization problem hard to solve. Here we study randomK-satisfiabilityproblems withK¼3,4, which are known to be very hard close to the SAT-UNSAT threshold,where problems stop having solutions. We show that the backtracking survey propagationalgorithm, in a time practically linear in the problem size, is able to find solutions very close tothe threshold, in a region unreachable by any other algorithm. All solutions found have nofrozen variables, thus supporting the conjecture that only unfrozen solutions can be found inlinear time, and that a problem becomes impossible to solve in linear time when all solutionscontain frozen variables.

The backtracking survey propagation algorithm for solving random K-SAT problems / Marino, Raffaele; Parisi, Giorgio; RICCI TERSENGHI, Federico. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - 7:(2016), p. 12996. [10.1038/ncomms12996]

The backtracking survey propagation algorithm for solving random K-SAT problems

PARISI, Giorgio;RICCI TERSENGHI, Federico
2016

Abstract

Discrete combinatorial optimization has a central role in many scientific disciplines, however,for hard problems we lack linear time algorithms that would allow us to solve very largeinstances. Moreover, it is still unclear what are the key features that make a discretecombinatorial optimization problem hard to solve. Here we study randomK-satisfiabilityproblems withK¼3,4, which are known to be very hard close to the SAT-UNSAT threshold,where problems stop having solutions. We show that the backtracking survey propagationalgorithm, in a time practically linear in the problem size, is able to find solutions very close tothe threshold, in a region unreachable by any other algorithm. All solutions found have nofrozen variables, thus supporting the conjecture that only unfrozen solutions can be found inlinear time, and that a problem becomes impossible to solve in linear time when all solutionscontain frozen variables.
2016
Chemistry (all); Biochemistry, Genetics and Molecular Biology (all); Physics and Astronomy (all)
01 Pubblicazione su rivista::01a Articolo in rivista
The backtracking survey propagation algorithm for solving random K-SAT problems / Marino, Raffaele; Parisi, Giorgio; RICCI TERSENGHI, Federico. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - 7:(2016), p. 12996. [10.1038/ncomms12996]
File allegati a questo prodotto
File Dimensione Formato  
Marino_Backtracking_2016.pdf

accesso aperto

Note: Articolo completo
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 471.98 kB
Formato Adobe PDF
471.98 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/949171
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 37
social impact